IFT81 as a Candidate Gene for Nonsyndromic Retinal Degeneration
نویسندگان
چکیده
Purpose IFT81, a core component of the IFT-B complex, involved in the bidirectional transport of ciliary proteins, has been recently implicated in syndromic ciliopathies. However, none of the IFT-B core complex proteins have been associated with nonsyndromic retinal dystrophies. Given the importance of ciliary transport in photoreceptor function and structural maintenance, we sought to investigate the impact of IFT (intraflagellar transport) mutations in nonsyndromic retinopathies. Methods Whole exome sequencing was performed on 50 cone-rod dystrophy (CRD) patients that were previously screened for mutations in known retinal disease genes. The impact of candidate mutation was studied using in vitro cell system and in vivo zebrafish assay to determine the pathogenicity of the variant. Results Compound heterozygous mutations in IFT81, including one nonsense (c.1213C>T, p.R405*) and one missense variant (c.1841T>C, p.L614P), were identified in a nonsyndromic CRD proband. Extensive functional analyses of the missense variant in cell culture and zebrafish strongly suggests its pathogenic nature. Loss of IFT81 impairs ciliogenesis and, interestingly, the missense variant displayed significantly reduced rescue of ciliogenesis in the IFT81 knockdown in vitro system. Consistently, dramatic reduction of rescue efficiency of the ift81 mutant zebrafish embryo by mRNA with the missense variant was observed, further supporting its pathogenicity. Conclusions Consistent with the function of the IFT-B complex in the maintenance of photoreceptor cilium, we report a case of mutations in a core IFT-B protein, IFT81. This represents the first report of mutations in IFT81 as a candidate gene for nonsyndromic retinal dystrophy, hence expanding the phenotype spectrum of IFT-B components.
منابع مشابه
Nonsyndromic retinitis pigmentosa is highly prevalent in the Jerusalem region with a high frequency of founder mutations
PURPOSE Nonsyndromic retinitis pigmentosa (RP) is the most common inherited retinal degeneration, and prevalence of the disease has been reported in populations of American and European origin with a relatively low consanguinity rate. Our aim was to determine the prevalence of nonsyndromic RP in the Jerusalem region, which has a population of about 1 million individuals with a high rate of cons...
متن کاملIFT81, encoding an IFT-B core protein, as a very rare cause of a ciliopathy phenotype
BACKGROUND Bidirectional intraflagellar transport (IFT) consists of two major protein complexes, IFT-A and IFT-B. In contrast to the IFT-B complex, all components of IFT-A have recently been linked to human ciliopathies when defective. We therefore hypothesised that mutations in additional IFT-B encoding genes can be found in patients with multisystemic ciliopathies. METHODS We screened 1628 ...
متن کاملIdentification of mutations causing inherited retinal degenerations in the israeli and palestinian populations using homozygosity mapping.
PURPOSE The Israeli and Palestinian populations are known to have a relatively high level of consanguineous marriages, leading to a relatively high frequency of autosomal recessive (AR) diseases. Our purpose was to use the homozygosity mapping approach, aiming to prioritize the set of genes and identify the molecular genetic causes underlying AR retinal degenerations in the Israeli and Palestin...
متن کاملClinical description and exclusion of candidate genes in a novel autosomal recessively inherited vitreoretinal dystrophy.
OBJECTIVES To describe the clinical phenotype of a novel autosomal recessively inherited vitreoretinal dystrophy in one generation of a family originating from eastern Switzerland. METHODS A clinical study including electroretinographic investigations followed by laboratory-based genetic and molecular analysis. Four affected and 3 unaffected members of the family were examined. Ten candidate ...
متن کاملCell based therapies in retinal diseases
Background Degenerative retinal diseases, including age related macular degeneration, glaucoma, and hereditary retinal dystrophies are major causes of blindness. The principal defect in these diseases is cell loss which is amenable to both cell based neuroprotective and neuroregenerative therapies. To briefly review the lines of research and potential candidates for cell based therapies among ...
متن کامل